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Abstract
We use an intertwining property of linear differential operators to construct the
general solution of a type of coupled Ermakov–Pinney system with two distinct
frequency terms.

PACS numbers: 02.30.Ik, 02.30.Uu, 05.45.Yv

1. Introduction

By an unbalanced Ermakov system we mean a coupled fourth-order system of the form

d2x

dt2
+ ω2

1x = x−3f (x/y)

d2y

dt2
+ ω2

2y = y−3g(y/x)

(1)

where f and g are arbitrary functions of their arguments and where ω1 �= ω2. When ω1 = ω2

we will call the system balanced. Systems of the second type are much discussed in the
literature and their modern treatment goes back to [8].

A crucial property of balanced Ermakov systems with ω1 = ω2 = ω(t), a function of
the independent variable t alone, is that they possess an invariant and are susceptible to a
hodograph-type transformation which linearizes them [1] so that they are integrable in terms
of solutions to d2θ

dt2 + ω2θ = 0. A great deal of information about their solutions can be
gleaned in this way [2, 3]. They are effectively linear extensions of Hamiltonian systems on
the sphere [4]. Systems with a more general form of ω depending on, in addition to t , the
dependent variables and their derivatives have been the subject of much study. In particular
the authors of [5] have extended the linearizable class in this direction.

Such methods do not apply to the unbalanced systems, chiefly because the invariant is no
longer available and we should emphasise that from one point of view, therefore, they are not
Ermakov systems at all.

Ermakov–Pinney systems are those for which the right-hand sides of equations (1) are
finite sums of terms of the form xiyj where i + j + 3 = 0. This homogeneity of weight −3 is
a crucial property of general Ermakov systems.
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It would be nice to be able to treat the unbalanced systems with the same algebraic elegance
as the symmetric but this really looks to be too much to ask in most cases. Nevertheless, as
we will show below, there is at least one restricted class, namely,

d2x

dt2
+ ω2

1(t)x = λx−1y−2

d2y

dt2
+ ω2

2(t)y = λx−2y−1

(2)

which can be solved in terms of the solutions of d2θ
dt2 + ω2

1(t)θ = 0 and d2 θ̃
dt2 + ω2

2(t)θ̃ = 0.
The construction hinges on the observation that system (2) is equivalent to the intertwining

condition

(∂2 + ω2
2)(α∂ + β) = (α∂ + γ )(∂2 + ω2

1). (3)

The operator α∂ + β then maps ker(∂2 + ω2
1) to ker(∂2 + ω2

2). Since the functions α and β
here are constructed from x and y in (2) we have relations which can be solved for x and
y in terms of bases of the kernels. This allows us to reduce the solution of the unbalanced
Ermakov–Pinney equation to a single quadrature.

In the next section we present the details of the general calculation and then some remarks.

2. Intertwining

The intertwining relation (3) in the case that ω1 = ω2 = ω expresses the condition that
L = α∂ + β represents a Lie point symmetry of the linear operator ∂2 + ω2. Some remarks
on this fact and on its connection with differential Galois theory are to be found in [7]. In this
case it is found that L = φ2∂ − φφ̇ where φ solves the Ermakov–Pinney equation

d2φ

dt2
+ ω2φ = kφ−3. (4)

So solutions of (4) correspond to point symmetries of the linear operator ∂2 + ω2. But
conversely, we may solve (4) using the fact thatLmaps the kernel of ∂2+ω2 onto itself. If θ1 and
θ2 are linearly independent elements of ker(∂2 + ω2), with unit Wronskian dθ2

dt θ1 − θ2
dθ1
dt = 1,

there exist, for each φ, constants c1 and c2 such that

φ2 dθ1

dt
− φ dφ

dt
θ1 = c1θ1 + c2θ2. (5)

We solve this relation for φ using θ−3
1 as integrating factor and noting that θ−2

1 = d
dt

(
θ2
θ1

)
to

yield

φ2 = d1θ
2
1 + 2d2θ1θ2 + d3θ

2
2 (6)

for constants d2 = −c1, d3 = −c2 and d1 a constant of integration. By substitution one verifies
that d1d2 − d2

2 = k and one has the familiar general solution to (4).
The unbalanced case (3) requires γ = β + 2 dα

dt and, after a single integration, relations of
the following form between α and β:

d2α

dt2
+ (ω2

2 − ω2
1)α + 2

dβ

dt
= 0 (7)

β
dα

dt
− α dβ

dt
+ β2 + α2ω2

1 = k (8)
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for constant k. These may be written in a more symmetric form by putting β = αφ and
φ̃ = −φ − α−1 dα

dt :

ω2
1 = k

α2
+

dφ

dt
− φ2 (9)

ω2
2 = k

α2
+

dφ̃

dt
− φ̃2. (10)

Finally, introducing x and y by φ = −x−1 dx
dt and φ̃ = −y−1 dy

dt does the job and we recover
the system (2), noting that α is xy up to a multiplicative constant. The choice α = xy leads to
the identification λ = k.

The operator L = xy∂ − y dx
dt maps a basis {θ1, θ2} of ker(∂2 +ω2

1) into a basis {θ̃1, θ̃2} of
ker(∂2 + ω2

2):

y

(
x

dθ1

dt
− θ1

dx

dt

)
= θ̃1

y

(
x

dθ2

dt
− θ2

dx

dt

)
= θ̃2

(11)

and solving this system for x and y yields

x−1 dx

dt
=
∣∣∣∣ θ1 θ2

θ̃1 θ̃2

∣∣∣∣
−1 ∣∣∣∣ dθ1/dt dθ2/dt

θ̃1 θ̃2

∣∣∣∣ (12)

xy =
∣∣∣∣ θ1 θ2

θ̃1 θ̃2

∣∣∣∣ . (13)

If we take {θ1, θ2} to be any fixed basis of ker(∂2 + ω2
1), then {θ̃1, θ̃2} can be one member

of the four-parameter family of bases of ker(∂2 +ω2
2). These four constants, together with the

single constant of integration arising from (12), will satisfy a single algebraic relation involving
λ and so x and y will depend on the requisite four constants of integration and constitute the
general solution of (2).

This relation can be made explicit. Note firstly that the scaling transformation x �→
µx, y �→ µ−1y preserves the system (2). This µ corresponds to the constant of integration
arising from equation (12). Now let the basis {θ1, θ2} have unit Wronskian. Because relations
(11) are unaltered by the scaling transformation, the four parameters in the family of bases
{θ̃1, θ̃2} are independent of µ. But differentiating (11) and forming the Wronskian of the basis
{θ̃1, θ̃2} shows that this Wronskian is equal to λ. This is the algebraic relation in question.

3. Remarks

The use of the intertwining relation has reduced the problem (2) to a single quadrature up
to the description of the kernels of the linear operators which is, of course, not explicitly
tractable in general. Even where it is tractable the quadrature of the first order, homogeneous,
linear equation (12), depending as it does on three constant parameters, is unlikely to be so.
Nevertheless one can extract information about the asymptotics of solutions at singularities.

The intertwining relation (3) is a generalization of the Darboux map [6] used in soliton
theory. It is also a deformation of the relation obtaining when ω1 = ω2 where it corresponds to
a Lie point symmetry condition. The Ermakov–Pinney equation and system discussed above
are therefore intimately connected with the symmetries of the family of linear, second-order
operators: there is no restriction, beyond regularity, on the t dependence of the ‘frequency’
functions.
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But it is natural to ask whether some more generality can be achieved by allowing (3) to
be a relation between 2 × 2 matrix differential operators:

(I∂ +H)(A∂ + B) = (A∂ + C)(I∂ +K). (14)

Here I is the unit 2 × 2 matrix and H,A,B,C and K general 2 × 2 matrices. It is
straightforward to show that the A∂ in the intertwining operators is immaterial and we may,
without loss of generality, consider

(I∂ +H) =  (I∂ +K). (15)

One may further show that the matrix equals 1 
−1
2 where (∂+H) 1 = (∂+K) 2 = 0

so that  i and  2 are arbitrary fundamental solution matrices of these linear systems.
The form of H and K in (15), however, is still subject to gauge transformations

∂ +H → g−1(∂ +H)g

∂ +K → k−1(∂ +K)k

g and k being invertible 2 × 2 matrices whose entries are independent of the solution matrices
 1 and  2. By using diagonal g and k involving exponentials of integrals of the diagonal
entries of H and K we may reduce H and K to off-diagonal form. Then, by using g and k of
the form (

a da/dt
0 a−1

)
for suitable a in each case, we may take the lower corner entries in H and K to be constant.
We are then left with the system forms of the operators ∂2 + ω2

1 and ∂2 + ω2
2 with which we

started. So this is, in fact, the general second-order case. For completeness we note that after
this reduction

 =
(

dα/dt + β dβ/dt − αω2
2

α β

)

=
(

dθ1/dt dθ2/dt
θ1 θ2

)(
dθ̃1/dt dθ̃2/dt
θ̃1 θ̃2

)−1

θ1, θ2, θ̃1 and θ̃2 being as before, a formula from which we easily recover the expressions (12)
and (13).

There will be similar connections between families of third- and higher-order linear
equations and linear systems with special classes of nonlinear equation analogous to these
Ermakov–Pinney systems. They will be of interest and presumably reducible to simple
quadrature in the same way.
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